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ANNOTATION

A gualitative descripticon is given of the evolution of a dense
plasma cloud, which is Injected into the magnetosphere perpendicular
to the magnetic fleld force lines. Characteristic times are evalu-
ated for the free expansion and diffusion of the magnetic field into
the cloud. Hydromagnetic instability questions are considered for
the cloud surface. Thils instabllity is related to the surface
curvature and the passage of the cloud around the magnetosphere
plasma at the initial stage of magnetic field diffusion into the
cloud. The effects of pressure anisotropy, which is caused by the
passage of the cloud along the magnetlie field force lines, are studied
on.the drift, and current instabillities are studied in the case of
subsequent spreading of the cloud along the magnetic fleld. New
instability modes are found' which significantly affect the pressure
anisotrdpy,iﬁ\an inhomogeneous plasma, or in the presence of a
flﬁx of particles in the plasma.



1. Qualitative Discussion of the Cloud Dynamics

Investigation of the behavior of plasma clouds (both charged
and quasi-neutral) in a transverse magnetic field is of current
interest in connection with the use of artificial perturbation for

studying cosmic plasma [1 - 8].

This article considers the injection cof a quasi-neutfal plasma
cloud in a transverse magnetic field. Here, the lollowing cloud
parameters are used (CGS system): overall clcud velocity along the
injection axis x}wﬁqo?,idispersion angle B%1§\§see Figure 1), dis-
peréion veloeity along the z—axis'%;ﬁ°wwhﬂ*ﬂfﬁm44°’L the initial dis-
persion velocity along the y-aiis, particle temperaﬁﬁrefﬁ“ﬁJFmgWM:L

“speed of sound v Te/Min‘ln“%: y X Mify

» M isg the mass of a
hydrogen atom,vﬁf@;ﬁﬂwfﬁQQ u“~1¢/. The injected cloud volume is
xﬁﬂ"’iﬁ; and the energy in this volume i1s f&&«j]joule = 107. The

numpber of particles in the cloud is

i - -
Noebmle - ‘%;‘-’2— = e ~ 107
The initial cloud density is

- Vg = Ry @i m "%"“’”10“

[

¥# .
Numbers in the margin indicate pagination in the original foreign
text.
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The ratic of the gas-kinetic pressure of the plasma to the maghetic

field pressure is _ : _
g Z‘i nt . 'U'sa 2. '

._ B T (1.1

where v, - Bymwm‘is the Alfven velocity (pmaamb. : At -the initial

’ -5

moment of time,P°9o”5f°fL The injection time t, v 10 psec = 10
The magnetic field strength is B~gﬂ. The ratio of the dynamie pres-
sure of the cloud, which moves with a velocity?vj\along the j-axis,

‘ , BRCAY
to the magnetic pressure is:

R *
P-:‘J"——Lﬂ o =—y—"—"

L S (1.2)

a)_ Free_expansion stage of the cloud

The magnetic fieldi@géé}not affect the expansion of the cloud
a8 long as B > 1. As a result, the final clcud dimensions at the
stage of free expansion (B‘% 1) are large compared to the initial

dimensions, 8o that the initial cloud dimensions can be neglected.

Thus, the cloud density decreases with time according to the equation:

V i iT (1.3)

since the cloud expansicn veloclty is of the order of v. along the

0

y and z-axes, and of the order of v along the x-axls (in a coor-

dinate system at rest with the cenfter of inertia of the clcud).

Since VO > Vs cloud expansion 1s stopped first by the action of the
anagnetle field with respect to 0 and XJ This occurs at t© v tl’ when
B ~ 1. Thus, according to Equation (1.1):
. B 8 :
np w§3w~fu / : (1.4)
Substituting Equation (1.4) in (1.3) yields:
(1.5)

K % -4 L
t. -~ (nvx“‘v'a ~ 30 .
. ] ()

/b



Here, the cioud dimensions are of the same order in all directions:
iﬂmﬁtﬁwmaxﬁ. \ : (1.6)

We note that this discussion [see Equation (1.3)] is correct for

these parameters only if:
T ' :
t,> t”/"s' ! (1.7)

when it is possible to neglect the dimensions which the cloud has at

the moment thejinjection ends, compared with its dimensions at time t.

Further cloud motion perpendicular to the mggnetic,force lines
1s determined by the magnetic field (forpéff). Here, the cloud!
shape can be quite different, depending on the parameter'xj.

1. Motion of a light plasma cloud ( a~1]).

Expansion of the cloud ceases along x and y almost at the same
time (for t ~ t), as indicabted by Equations (1.1) and (1.2) for
&~{§'wh¢n the velooity'ug”ﬁ*%L that is, wheniﬂ9~ﬁL The inertia of

the cloud will cause 1t to continue to expand at time (%tl) perpen-

dicular to the magnetic field (and simultaneously along the field),
so that the parameter £ becomes less than unity, and the magnetic
field starts to collapse the cloud perpendicular to the force lines

with a velccity ~ Vo The cloud density increases faster from this

two-dimensional compression than 1t decreased, because of the spread+:

ing of the plasma along the fleld, so that the density soon (in a

time ~ tl) again reaches a value n > nq, when B > 1, and so forth.

In this manner, the cloud will oscillate with cylindrical symmetry
relative to the z-axis, with a continually decreasing radius. Here,
the cloud density will remaln almost constant (n ~ nl). The average



cloud radius and length will vary with time as follows. Since the
magnetic field does not affect the cloud expansion along the force
lines, '
Lo~L,rww, |
B (1.8)
where t is time measured from the end of the free expansion of the
cloud. Since the cloud volume deforms as Vlgﬁi in two-dimensicnal

compression, and remains almost constant (N = const, n v nl),
: ¥ :

Lg~ [ W, i ,\,____Hr_:- L?é :
M T Y L (1.9)

Diffusion of the magnetic field into the cloud occurs simultaneously
with the collapse of the cloud. The diffusion is jrelated] to the
dissipation of the currents induced in the cloud, which compensate
for the external magnetic field in the cloud volume. The cloud
compression process perpendicular to the field ends after a time
T~t), during which the magnetic field completely diffuses into the
cloud. At this moment, the transverse cloud dimensions will be:

X/
A

by ~ L e e
R AN

(1.10)

]
1

t

from Eguation {(1.3)}. On the other hand, it is known that in time tJ, /T

the magnetic field will diffuse into a plasma perpendicular to the
magnetic force lines to a depth

Ler W57, \ : (1.11)

2 - 2
where D=iim = 2

TS, T is the diffusion coefficient (magnetic viscosity)

of the field, 94 is the effective collision frequency of the ecloud
electrons, and wpe is the Langmuir frequency of the electrons. In
the case of the colllsjon-controlled dissipation, Vor is determined

by Coulombk collislon of the electrons with the electrons and ions of
the cloud, and also by the neutrals in the ionosphere. (For the
parameters used here, the neutrals give a contribution on the order
of 1 for.altitudes g 500 km.) Equating Equations (1.10) ana (1.11)
yields:|



3y )
T¢~(TJI:;‘D;_) 2“*‘3'102. (1.12)

It follows from Equations (1.8), (1.10), and (1.12) that when the
cloud stops collapsing, it will be a strongly elongated cylinder
with dimensions:

B L.E"_"" U;Td‘;" 1'05, .

xa (mT (1.13)

2. Motion of a heavy plasma cloud (£»1b

In this case, the cloud dimensions i, *L!will be much less than thd

dimensions Lj¢H~wa when the cloud stops expanding along X [ﬁt a. tlmé
g ! l
t ~ t; from Equation (1.5)], when B~ 1 and n ~ n, ~ 10% [kee (1.6)7.

1
For example,':z\= 137 for a barium cloud; the numerical values:
be TG h 240 L Lyt a0 (1.14)
Since Py>1, expansion along y (and also along z) in thils case will /8

be such that the cloud becomes a disk, which is flattened along the
injection direction (x). Furthermore, the cloud density will con-
tinue to decrease, and the magnetic field will collapse the cloud
for the same reasons given above, (1}, but now only along x. Al-
though compression by the magnetic field is now one-dimensiocnal,
nonetheless, the density will again reach the value n " ny (B v 1)

éfﬁéf a certain time, since the base surfaces of such a cloud surface
grow much faster in time than its lateral surfaces, through which the
cloud flows. Actually, the ratio of the cloud particle fluxes perpen-
dlcular to these surfaces is of the order:

s v ;
0 v, ; T
sbase : " (L, L:ﬁim(pHMyﬁ 1+%¢4 (1.15)
lateral ‘A *

Thus, the cloud will continue to be compressed along x, and will

flow along y and 2 with' an almost constant density n ~ n, . The

cloud volume remains constant and deforms: as V*~xthﬂ ' Then, the

same considerations as in section (1) yield:



ur,l.x‘!_,}ﬁ_

L ~L “"LE-D‘Ift L. (":"“:",;f.wji’v (L RET 5 (1.16)
The diffusion time of the magnetic field 1is:
k3
Ty~t Nl ~340° (1.17)
M el
The cloud dimensions are:
L, l.':: l " &
b~ g ~30 Ly by, U0 (1.18)

at the moment when the field diffuses completely into the cloud.

It -should be noted that a similar discussion of the magnetic
field diffusion into the cloud during its collapse is valid under

the conditicns that the free expansion time t, of the c¢loud 1s sig-

1
nificantly less than the diffusion time T3 of the magnetic fleld

into the cloud. If instabilities arise in the cloud simultaneously
with the collapse of the cloud, and if these 1lnstabilities lead to

an increase of the effective collision fregquency Vg of the cloud

electrons, and thus decrease the {(turbulent) diffusion time Tg»

then the cloud coliapse will end much more quickly.

We conslder the stability of a sharp cloud boundary (in the
sense that the perturbation wavelength of the boundary is much
larger than tﬁe thickness ol the transition layer) in a coordinate
system that 1s at rest with respect to the undisturbed boundary.
Inside the cloud, the electric and magnetic flelds are not at equi-
librium, and the density 1is constant. The perturbing gquantities
are fourd from the equation of continuity, the equation of state,

and- the equation of equilibrium in the single-fluid approximation:

P pe (1.19)



Py and py are the equilibrium

(constant) density and bressure, and Yo iz the adiabatic index. A

where‘&*q;ﬁﬂi]is the sound speed;

LY
r—e L

perturbation ezt !from the equilibrium is inftroduced into the

=
&L

plasma, 1t 'is convenient to solve the system of equations (1.19)
relative to the variable q-dﬂ§P'iQ§§?§§ of for{?}lr If tberpqrtup%
bation is very small scaled, wlth a wavelength that 1s small com-
pared with the radius of curvature of the cloud surface, then a

local coordinate system can be introddbed, and solutions for any

~
i__l
o

perturbed gquantity f can be sought in the form:

|

f=]c(<"]t‘~§°('ikaxj+lkza -twt) | _ (1.20)

where the x-axis is directed perpendicular to the cloud surface, and
vy and z lie in the plane of the surface. Here, the solution for
n{x) has the form: '

1<)~ e xii e i
! ’ (1.21)

where Xy is the normal coordinate of the boundary, which can be-

taken as the origin of the coordinates (XG = 0); andﬁ;ﬁﬁﬂiﬁﬁﬁ.

-
The dlsplacenent £ is expregsed in terms of n in the form:

§ ;,_-1_"_‘."_'71?’. : (1.22)

A vacuum fleld exists outside the clbud (we neglect the effect
of the surrounding low-density plasma), such that the equilibrilum
magnetic fleld 1s tangent to the surface at the cloud boundary. If
the perturbation current 1s neglected, then the perturbed magnetic
field can be written 1in the form:

S Bev ¥y E (1.23)

Then the equation d&ﬁnaw;o(yields:

VeV, g™ xs0 (1.24)

4

where q,=VKivi;".



The dispersion for determiningiur{irﬂis obtained by matching
the solutlons ingide and outside the c¢loud at the boundary. One

of the boundary conditions is:

a‘f Y dfaBo I, \ |
o ,,,Ls(ua- i w)mo o .en)
where~g1f:w ﬁ t@e Alfven velocity at the c¢cloud boundary, 1s a result

of the constant total (gas-kinetic and magnetic) pressure at the
perturbed cloud surface [9]. The second boundary condltion is a
result of the continuity of the tangential component of the electric

field Qﬁi}igﬁj at fhe undilsturbed boundary. Here, the Maxwell equa-

tion.tat the boundary between the two media x = 0), projected on the

-3
normal n to the boundary, is

~“-( -"*)L.Wm’ff»’ —ff?im"E“&:af*ﬁ’iggiig., o

Here, we note that the normal component of the curl of a vector can

(1.26)

be expressed in terms of the tangential derlivatives of the tangential
components of the vector. Replacing=§ﬂ&§&ig\(near the cloud x < Q)

in Equation (1.26) by its expression from the equation of ion

motlon¥: /2
%

}qa

- Wy
Eaif
€,

.

.SL.\'
)’I

(1.26a)

> . ;
and noting that p. = const, and v has the form_\fm-bﬁfv [see (1.22)]
0 T w v ' 3

yields the following desired boundary condition:

apﬁ

-‘%.rot[ga;lﬂb I (1.27)

3
B |

Eguations (1.20), {1.21), and (1.24) and the characteristic equations
for {1.25) and (1.27) yield the exponential growth rate (w = ivy)

for the surface wave#®#,

We do not assume that the electric field lines are trapped E1;9
(91, 31ngﬁhthls assumption greatly limits the observed frequency eﬁ \
where fi-% [, although (1.27) is the same as 1f the filield lines

are frozen

* . .
We note that a slimilar cloud boundary instability was examined

in [8].



z-u

.u{]k Ao} -Ky . _? (1.28)

Here we tookiu;~ S‘from the equilibrlum conditions, and the observa- /12

bility conditions ( h«i-4fzfe” . L\):i;t;cifigu|«:<; for the existence of

an instability, and {-w4J%%—«Kp&L This flute~like instability

(flutes, which extend along the magnetlc field . ﬁ »hgp is a result
of the unfavorable (convex) curvature of the magnedlc field contain—

ing the cloud CJ%&?L<$?. The perturbation amplitude decreases ex-

potentially on both sides of the cloud boundary on the characteristic
line Hfl“iaml;l(on'the order..of a wavelength in the y direction).
Jince we neglected the displacement current, the finite cloud con-
ductivity, fhe boundary acceleration and the electron inertia, then
the expressién'for the growth rate (1.28) 4is valid 1n the region ‘

P B, dln
Fiﬂzy«uk!,ngﬁng, where - |——~#1 is the characterlstlc time for

changing the veloclty of the observed part of the boundary in a
direction perpendicular to the magnétic field. In particular, for
the investigated short-wavelength perturbations (ﬁéat\), the change
in the cloud boundary velocity can always be neglected for times
required to develop an instability.‘ The maximuﬁ increment can be

‘evaluated by replacing ]kf|~kgiin Equation (1.28) by its maximum

value from the observabilility condifion, which is equal to the transi-
tion layer thickness, that 1s, the penetration depth of the magnetic
field onto the cloudi*‘/pr. Depending-on the c¢loud ceollapse and

the diffusion of the magnetic field into the cloud, this layer will
thicken and the field radius of curvature ~ L will increase, so
that the exponential growth rate will decrease. For an estimate,

we introduce the maximum possible value of the growth rate, whieh

is attained at the initial stage of compfeésion of the cloud by the /1
field (L"'Lu\ H ‘NMP;

e 10t
L (1.29)



During the time (~Y ™) in Whéch this instability develops, the cloud
boundary diffuses to a depthhon the order of a perturbation wave-
length [10] ~e==h.-h}, 50 that this instability can lead to an
increase of the diffuéion of ‘the fleld into the.cloud. As a result,
the diffusion time can be less than that found above from a con-
sideration of collisional diffusion, and thus the final transverse

cloud dimension can be larger than calculated earlier.

2. Instability of Surface-Potential Oscillations in a

Cloud Caused by the Cloud Passing Around the Iono-

sphneric Plasma

The hydromagnetic instability of the cloud boundary, investi-
gated above, was related fto the finite unfavorable curvature of the
magnetic field surrounding the cloud. Because of the sufficlently
rapid cloud expansion along the magnetic field, the curvature of the
cloud boundary decreases, so that this instability can be considered
not to be dangerous (it does not determine the diffusion of the
magnetic field into the c¢loud). Moreover, it -will be shown that the
cloud boundary stability is significantly affected by the discharge
of the lonospheric plasma, which cannot be considered in the single
fluld hydrodynamic model.

Here, we analyze the cloud boundary stability relative to the
buildup of potential surface oscillations, caused by the cloud pass-
ing around the ionospheric plasma,) using a two-fluid hydrodynamic
model. The cloud boundary is considered to be a transition region éli
(layer) of thickness 1 << L,, where L is the cloud dimension. This
allows a one-dimensional problem to be solved if the investigated/
perturbations have a characteristic wavelength A << L,

The-loncspheric plasma can be neglected at equilibrium within
the transition layer to a first approximation, since the cloud
density at this stage of evolution is higher than the density of
the ionospheric plasma. If it 1s assumed for simplicity that the

cloud particle temperature is constant, the equilibrium state of /

10 .



the transition layer plasma will be determined by the system of
egquations:
—T' glangs e 1‘_E'+ l’*—a] =g
c’:.& ar

?EEr £ zewﬂavs | (2.1)

G- mZean,

"Here, the index o is eifher'for ionsg or electrens 1in the cloud.
Equations (2.1) are wriltten in a coordinate system in which the
cloud velocity normal to the boundary is zero (9:@ﬁb“ﬁ:, the Xef|
axlis is normal to the boundary, and the z-axis is aloﬁg the mag-
netic field. Considering that the magnetlc and electric flelds
are absent inside the cloud and that only a homcgeneous magnetic
field exists outside the-layer, let us give the electric and mag-

netic field distribution in the transition layer in the form:

“E f(x), B=B, f, (=)

such that f.e)+f,

= N 4
» fz(t}-'i,J’, E.,“—Vé”ﬁo\ ; Where Vey Uy fim o).

w1y
Qtherwlse, the functicns f‘1 and f2 are afbitrary, and should be

evaluated from an exact solutlon of the diffusion of the magnetic
fleld into the plasma. For the glven electric and magnetic fields /15
in the layer, the system of equations (2.1) is easily reduced to

a aystem of linear algebraic egquations for n, and n,:

.yt‘:Te-r.niT;man“-f:)_“ ' (2.2)

reni=n.gf]
- _-— i ’ ) (Sa Be B}
where Me (o)~ ni(o} =1, - ' T T +Tl ,l"l ](‘.I f { o

Eguaticns 2.2 yleld:

notunb(i-a teirz = ) (2.3)
and the first Equation (2.1)(§ié1ds|the quantity:
DI
. Uy [ "FJ;“(T )}] (2.4)

11



- V \. K
where Vaiﬂﬁgfp-ﬁﬁ} ' %=%§% i1s the gyro frequency of the'uﬁh particle)

type.

If it is assumed that the boundary layer thickness cannot be
t1ess than the quantity c/wpe, where ¢ 1is thelvelocity of light and

“oe is the electron Langmuir frequency, and if the cloud parameters

developed. above are used, then the quantity n is very small {n <
10—5). This means that the plasma is quasi-neutral (ne Nony o=
P, B‘z ' ‘
ﬁo(i'ﬁg) practically everywhere in the transition layer, and that

the velocity vy is less than or of the same order as Vv for the

Oy
same parameters.

We turn to analyzing the stability of this egquilibrium con-
Tiguration of the surface layer in the presence of a magnhetized
plasma. Here, a dense nonmagnetized plasma moves along the boundary
inside the éﬁoud; a stationary ionospheric plasma 1is cutside the

cloud. Cloud and}pjaSma particles are present inside the boundary
region. The stabiiity will be investigated in the hydrodynamic
approximation. Linearizing the continulty equaticn and the equation
of motion for each particle type, under the assumptions of a per-
turbing potential (§-~w@b and unperturbed particle temperatures,

yields:

v o) i 81y 2 T A T
LﬂlU ‘&.‘;‘éf _Q}U‘HLJ%—L[‘Ur.]ﬂ-j.,-zl.m(q)-f-e—%)! (2'5)

c. i

wherejg&gguéﬁfpjﬁh ;x,ﬁjare the perturbed density and vélocity for

particies of a given type; and.;JaM—E%L Since the problem is homo-

geneous along y and z, all perturbed quantities are proportional to
- o '

exp (iky+ix2l . Combining the Polsson eguation:

a5 PoTdmwen',

(2.6)

12
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with Equation. (2.5) yields a closed system of equations which de-
Scribe the oscillation potential near the cloud boundary. Since the
plasma is homogenecus outside the transition layer (to the right and
left of the cloud boundary), then the potential. ¢|(x) can be ex-

pressed in the form ekX outside the boundaryl Hereafter, we will

be interested in only the surface oscillations of the cloud boundary

— that 1s, we will consider that the characteristic wavelength of

the perturbations which are perpendicular to the layer to be larger 4

than its thickness:'f}£¥&%—ﬁ We remember, however, since the probie@

is one-dimensional, »#L.. Then the potentiall outside thé cloud boundry|
can be written in the form:

N0

. ' : 3 , 7 .
Py = o {aaq. xee (2.7)

2 , xwa

Here, we neglect the layer thickness, sinceigﬁ«i . The system of
Eqﬂations (2.5) and (2.6} ocutside the boundary then reduces to a
system of linear homogeneous equations whose solvability condition /1

is the equaticn:

2 ¢ wd pfeo (R

- Lp kW
W't wtokty eyl SELE
. o'
— . "‘Uﬂ‘ we<o 2 8
'IH - ¢ L]
. h‘ (KI: Ky, ¥zl , l'(a\:’"_{ tr, % >5 ( )

r

Obviously, Egquation (2.8) has a different form on both sides of the
boundsry. In the cloud regicn, where Fuﬂig this equation relates 3
. K[ withw' and the cloud parameters, but in the stationary iono-

spheric plasma region (5a0.11=ﬂ@L§/it'relates k., with » and with the

2
ionosphere plasma parameters.

The dispersion equation [3Q%ﬂﬁ5hgéQJ should be obtained here by
considering the boundary conditions. However, in order to write the
boundary conditions, first it is necessary to find the:agicentra:I B
tion n' as a function of the potential ¢ inside the transition re-
gion, and then to integrate over the thickness of the layer. The

boundary conditions obtained in this manner are insensitive to the

13



. -+
gradient of the velocity v perpendicular to the boundary. This makes

o(0)

it possible to neglect the difference between the quantlties v

and v© from the very beginning, and to write the solution to the
equation of motion [the seccond of Equations (2.5)] 1inside the transi-
tion layer in the form:
S e [k oeren Ao
[ ‘”li;@;{_”ﬁ:gg {:’L‘Vq} “.‘-&?? ﬂ.i"_""(v“.’:ﬂ%}.‘

P oW

(2.9)

a

[ . -
where @§=$+_“*". substituting vl in the continuity equatlon leads

to the following equation relating the concentration n1 with the

potential ¢:

., ;m— l"l' .,._,Q_.‘i. .
{1 ) T ,9/ - ' (2.10)
Here, \ , , /18
’l\.“gi(l"a,)‘a}"“(:ﬁ"{}"l‘ {",,)*K,"x‘& '
W ES) w2 () W & ()i (ir)
't ‘"E*ﬁ% ‘5“”“ w? ' 1" w‘n(w'r_‘f;))

cases: a) for cold partlcles%uﬁ&ruq, when 1t is possible to neglect

the first term in the parentheses of Equation (2.10) on the left

side to cobtaln:

4dite

'RWTMFLCP \ (2.11)

and b) hot particles (@'«rﬁg@ when the first term is large compared
to the second*, and it is possible to write:

(2.12)

Hereafter, we will assume a 'cold ionobpheric plasma

*01), that 1s; Equatlonf(2 ll) w1ll be used for\

Cw»mq VRV T

the eleotrons and 1ons in the 1onospherlc plasma, and terms

#
Strictly speaking, this hydrodynamic approximation 1s correct only
in these two l1imiting cases,

14



pPOportionaL to Vé\will be completely neglected in Equation (2.8).

Then, g | will have the form:

‘( wK? (’*ve; ‘me -0
‘a e m*-(aj -r.ﬂ -w‘) (2.13)

Both the case of cold electrons (b">‘f\) and hot electrons ('Wé““¢m$

wili be considered for the cloud plasma. The cloud ions will be
considered to be cold (@i®»*¥), /19

a)_ Cold electron gage_(wé»vvﬁ\) )
In this case, Equation (2.8) inside the cloud reduces simply
to the equatilon k2 = 0, and yields:
. R.‘.zm:“_““ﬁza -'aa.;\;qk. (2'11_‘.)

Substituting n' from Equation (2.11). for all particles in the
Poisson equation (2.6), and integrating over the thickness of the
transition layer leads to the following dispersion eqguation#

’ oz L B %
wm) fpan t W R’
gl . S i’ LA S v
R( o e AN T (2.15)

The cloud particle density significantly exceeds that of the iono-

. ' . tl s
spheric plasma nﬁnhg, that is, g, dwps, Moreover, the electron

gyro-Frequency is less than the electron Langmuir frequency (W:Gﬁﬁaj)

in the ionospherie plasma at altitudes of interest. Then, Equation

(2.15) is solved in the freguency region w&fuﬁeh_ ,coiq%mq, and is

easily determined 1n two limiting cases Ky#ky Ky»xg

1) k »> k . Then k, =k

g z 1 and Equation (2.15) has’

2r'tky’

the form:

¥ oL
It is easy to see that Equation (2.15) can be obtained directly
from the continulty condition at the boundary from the normal com-
penent of the electric induction.



:ﬁ%l_&' ‘:’3"5 -Tc:;‘ii:ﬁ;z)go. (2.16)
Since “’;e ”'w:% » then jw'= “x 2}@;\ , and
o= é““ﬁ*f.’*_.\l“"‘;'?i"":é‘:z" (2.17)
Equation (2.17) shows that oscillations with /20
bl (2:18)
are unstable with an increment _
o h’i—;.'leog|xf_I‘E>ﬂé- \ - (2.19)

The electric fields whiech arise in thils instability are directed
perpendicular to the maghetic field and can significantly affect the
current distribution in the layer, which in turn significantly
changes the diffusion of the magnetic field into the cloud. For

the case:

2) Ky <K, "’ = \gﬂ_l'l’ '51,51«2'[\,!91‘%{11;. ’

Equation (2.15) reduces to the form

o, N Wee, o ’
2T RS T T (2.20)

and has an unstable solution w = 1y, where
e G N sl \ ‘ (2.21)

An examination of these limiting cases makes it obvicus that

for 1§ﬁlwh, an instability develops for which the thgrmal veloelity
dispersion of the c¢loud can be neglected. However, if -we take

%~k for these instabllities, 'then it turns out that instabllities

withe ﬁ>’%ﬁ£|occur only for bundle velocitiles significantly above
the thermal velocity of the cloud electrons. Actually, it follows

from Equation (2.19) [see also (2. }] that:

16
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=

Since we obtain-ﬁﬁ&;ﬂé\experimentally, then the hot electron case

|

is of greater interest.

b) Hot electron case { We <« k. 1)

Here, the solution of Equation (2.8) for ki, that is, the pro-

jection of the wave vector on the x-axis inside the cloud has
the form:

L AL
'K““(K‘l- ‘];:')&'\ (2.23)

where v“ TE/M\ ., and Mi is the mass of cloud ions. The concen-

tration n' is now related to the potential ¢ for cloud electrons by
Equation (2.12). Then, integrating the Polsson equation over the
thickness of the transition layer leads to the followih@}dispersion

equation:

in”“q*n<vﬂqa; St o,

'w(w — 5% }

(2.24)

where kl is determined from Equation (2.23), and k2 1s determined

only by assuming an iocnospheric plasma which is not foo rarefiled

||(m o BE l::

Then, in the first approximatloniw==ﬁvll’ ;Lu-w.ugsgrb

and Equation {(2.24) takes the form:
‘,(“ Lo )(}-r--“ ¥ o iE ). | (2.25)

after substituting k., and kz, where:

1

Mol ;J-'h N -Eg-hﬂ';ei o / , (2.26)

—— e ey

Yoo me RNy
T "y J Yo cafwta fio)

If the left side of Equation {(2.25) is taken as a function of

art>ol, then it can be seen that 1t has a minimum value ﬁ?myﬁq , Where

?Eeé ”“?hW%\fs the Debye radius of the cloud electrons, under the

condition that;ﬁn334<if( Geﬁtamff;x;ﬂ). From this it follows that a

~
ny
Mo

|
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purely aperiodic solution (r{?ﬂ?;occurs for large values oOFf QRw) .

Studying the behavior of g as a function of JJ%, we note that q is

- -

large when (R¥) =0}l Introducing the notation y- kK

ﬂ%1ayields:

o 'S.i.. ‘L"D"L I .
(2.27)

iq,a ¥, &% Hﬂsi%n.Kq

It is obvious that qr°| for W.¢4, that is, the instabllity occurs
for?f%ﬁl<lﬂJL On the other hand,’}ﬁcl requires that‘#’_aﬁu?DA,:that

is, the condition for the existence of an apericdic instability in

the system of a stationary cloud has a resonant character:

FRERPVENEE . Y

: 37 WPy
O‘T"I l"alkg!r:e _nn (2.28)
The exponential growth rate of thls 1nstabllity is:
T“"“‘%% \
(2.29)

and is larger than the cloud Langmuir frequency f.f?wé,id

A drift instability can exist along with the highly resonant

aperiodic 1nstability, ifiﬁ{@%ﬁ@hxl. Here, ifg%»ib then the solu-

tion to Equation (2.25) is found in the region %rfﬁﬁﬂ&\, and has

the fornm:

:. . ) !'.-, 2'. . '
ez eayrie] (imd ﬂf*‘il)é{ (2.30)

Thus, outside the resonance, determined by (2.28), there are two

pranches of unstable oscillations with freguencies:
e ()t | (2.51)

and with an exponential growth rate of:

“~
PO

It =5 4Ky Yy s | (2.32)

which, however, is less than the Langmulr frequency c¢f the cloud
( Ime c‘wm" ) .

18



In coneclusion, it should be noted that since the directed clcud

velocity lﬁuélﬁJ and, under the conditions being investigated,

K~k peZodel, the Inequality (2.28) can be satisfied only for
{ . . all ¢ .

v v
KﬁVbhjﬁﬁ)aclL This condition is not satisfied for experiments of

interest to us. Thus, the maximum exponential growth rate for the
surface potential oscilllation Instablility of the cloud, when passing
over the ionosphere plasma,is less than the Langmuir freguency of
the cloud ions. However, in this case it significantly exceeds the
growth rate for hydromagnetic instability. Thus, this instability
can play an important role in the diffusion of a magnetic field

into the cloud plasma.

3. Stabllity of Weakly Inhomogeneous Anlsotropic

Plasma with a Finite Pressure

(as applied to a cloud at its diffusion expansion stage)

\

The hydrodynamic instabllity of the boundary and the instabi-~
lity of surface oscillations of the cloud when passing over the
ionosphere plasma are related to the end of the first stage — the

free expansion stage of the cloud — and to the start of the second

stage — the stage of diffusion of the magnetic fleld intoc the cloud.

These instabllities basically determine the diffusion velocity of
the magnetic flileld intc the plasma, but they cannct qualitatively
change The character of the cloud evolution, since they only occur
in the presence of a thin transition layer between the magnetic
field and the cloud plasma. Depending on the penetration of the
magnetic field into the plasma, the transition layer thickness in-
creases, and becomes equal with the c¢loud dimensions. In this case,
volume perturbations start to play an important role. These per-
turbations have a wavelength which is less than the dimensions of
the cloud inhomogeneities and of the magnetic fleld. We use a
kinetic approach to analyze these perturbations. This approach
allows us to consider the effect of pressure (temperature) aniso-

tropy 1n the cloud plasma, which ariSeﬂfrom the free flow of the

19



plasma along the magnetic fleld (TL27.). Th? effect of the surround-
ing ionospheric plasma will be neglected for the time being (see
below). The problem can be considered to be one-dimensional in the
case of a small-scale perturbation (3KL#Q), which will interest us
further on¥. Here it 1s not necessary ﬁo use the coordinate system
with the x-axlis along the direction of the inhomogeneity. It is
more convenient to choose a cocrdinate system such that ?4 (thei_

oscillation wave vector projected on a plane perpendicular to tﬁe

magnetic field) is perpendicular to the x-axis. Then the projection

of the wave vector along the inhcmogenelty is w,ex, cosal , and Ker kysine
perpendicular to the inhomecgeniety, where the angle o is the angle
between the directicn of the inhomogeneity. and the vector K:L

The dispersion equation for small oscillations in the quasi-

classical approximdtion @the zerc approximation with respect to the
paraméﬁéfqﬁiJrl]Iié an algebraic equation, and has the known form:

c}dgr(:e_J;J-frliN,-_~- &j)=0. _ (3.1)
where ?ia%%[ 1s the refraction index of the medium, and

@g=8ﬁ+§@h?1&ﬁ(,is the dielectric constant -tensor of the medium (ﬁd?

th

is the dielectric constant tensor of the a type.particles;. If

. -+
we introduce the angle O between the wave vector k and the z-axis,

which is directed along the magnetic field K}%Gaﬁvk}j, then, in

the chosen coordinate system with k, =0, Eguation (3.1) takes

the form: . _ - L

C(#-es) { %fﬁ'-egaaayﬁ N [egy sti0 €y endvr

DBy ay) s«;‘mzﬁgﬁj} by Eye (WL 07 £y ) -

- {méz; ( 5‘5200\&‘%‘{'«33)"55.;&‘.3 'e,y;(;w"smm;;m.ega) (3.2)
- ;fn&gngsag):o. : L \

= B bong {1

*We will also neglect the curvature oﬁ the magnetic field lines,
which is correct in this stage, when the cloud“isﬁmainly stretched
along the magnetic fileld (here, the fleld lines are only|weakly
distorted).

20
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The electron dielectron constant for the cloud can be deter-
mined using the approximation of a weak inhomogeneity, since the
electron Larmor radius is small compared to the characteristic di-
mension of the inhomogeniety. The state of the lons in the dif-
fusional cloud expansion passes through two Stages. In the first
stage, the Larmor radius of the lons is large compared to the cloud

dimensions. In this case, the calculation of the ionic contributﬁon‘

to the dielectric constant can neglect the effect of the magnetic

field (the case of unmagnetized ilons). As the cloud expands further,

its dimensions increase and become larger than the ionic Larmor
radius. Then we have the second stage — the stage of magnetized
ions when the approximation of a weak inhomogeneity is applicable

to the ions as well as for the electrons. Thus, the dielectric con-
stant tensor for agiven particle type ls determined in two limiting
cases: p >> L and p << 1, Where:p“muﬂud is the Larmor radius of

the particles.
1. p >>» L
In this case, as noted earlier, the effect of the external

magnetic field on the motion of a glven particle type can be

neglected, and the binormal distribution function:

: .ﬁ(f:}‘“ 1\‘4 ‘
For fo~ o ) 6 (8 [ nm ) (3.3)

can be used as the equilibrium distribution function. The perturba-
tion contribution to the distribution function is determined from
the known linearized Vlasov equation (we neglect collisions between

particies), and has the form:

'q)s * Ezq)&} (LI

L. 58 _( L
£ s ER R

m,i

(3.4)

where

:‘i} es-n--—-- (uj-st” ’.F' 9%:]:

M ' ot
‘qu“ﬁamuﬁf;
aTe T-r,,
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The dielectric constant'tensor is related to the conductivity

tensor by the relation %jﬁﬁqd , which is determined from the

B

equation:

Jimefu paveoys; (3.5)
wherejg is the perturbed flux of a given particle type. Integration
over Velocity in Equation (3.5) -in the general case 1s complicated.

- S0 we consider two limiting cases: 1) wavesppropagated perpendicular
to.the magnetic field (u)“aﬁ*)h and 2) waves propagated alcong the
magnetic field (@»¥¥,), It is obvious that in the 1imit of cold /2
vartlicles (?@»KvHM@, both cases should give the same result. In the

' - -1/
first case, the multiplier ( w-xV¥ )/ in Equatlon (3.4) for £ is ex-
panded in powers of xlmm@-khir“ﬁ In the second:case, it is expanded J

Fandih ) 1
in power of K¢U;U°f“i”ﬂ}. After integrating Equation (3.5) over
velcocity, this procedure yields the followlng expression for the di-
electric constant tensor:
) - FANS '
o 2 |
L e (3.6)

where, 1in the caseﬁu)»xamh\, the tensor A.j has the components:

A2 Je(x,) | ',\‘J‘J xt [2, (9% g .
;_'f\zah’fxﬁ—w RNCAE I (3.7)
D T R

The components in the second case u)»xtmj:

Ax: Aw':’f(xu)“' T (Jt(x} ‘} nzz“f’ (3 (x) )

i

4 . (x‘z dT ‘|| o (M))] ( 3 . 8)
.Asg‘/\gs "‘E""[\)( ..) ‘r ( (1 23(1'« \
d:: o W .
Here, 3(%)43n ,gﬂ ; Jau lK;ﬂ”h. . The other components of Aij

are egual to zero. It is easy to see that the Expressions (3.7) and

i Qoo R 2
(3.8) for Aij coincide in the limit ;= whenﬁh(xulmi*I;J

-
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IT. p << L

In this case, we examine the dynamics of the cloud electrons
and ions in the second expansion stage. In the first approximation

of a weak inhomogeniety, the distribution function for a given

particle typg]is chosen as close to a binormal function: /28
3 i v] -~ =
f "('"EL“‘Z"“)F( F), (3.9)
where F(F-Eﬂ ls determined by Eguation (3.3), and # = 3§”. The per-

furbation distripugion'function is written in the form of a time

integral along the unperturbed trajectory of particle motion:

° N V "
J [ E ( )]Bﬂ, elpﬁmtlifﬁﬁﬂl

(3.10)

Here i3 1t convenient to write the particle velccity as a functicn

of ¢' in projections on the directicn c¢f inhomogeneity (vi), and the

direction perpendicular to the inhomogeneity (vé) {the directilon of
particle drift): '

i 2 dfng
e (5 m') vzn'ulnm(ff m) ;‘“ﬂ Y

D en o (3.11)

The value of kﬁr\along the partlcle traJectory has the form:

P X ut' K“’:& [C'?*S("S ""‘J?-t)”m(“g “)]* ;;f—cl—a—;g{{ (3.12)

The anglas'kis the azimuthal angle in veloclity space between ﬁﬁland

the direction of the inhomogeneity. Substituting Eguation (3.10)
for the perturbed distribution function in (3.5), and integrating

over jt\4 | and w,|determines ;4 and also egy only 1n terms of an

integral for ¥:|. Here, the dielectric constant tensor e.. has

1d
the form:
Y SR A NN
Eij 6\‘) j‘q,tz._:&_iJ(ﬂi}i)' L2
. 'CIJ'! un )
bk E E_KE& 3y \ (3.13)
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+
Here, the vector A has the projections:

S
D
\O

|

Lm S 3, ‘.} (3974, |
f\x [t ,._ﬁ-:l N (3, Ay (3.14)
J

[t + ..‘:"__"_f'_ 3+q[) = J

are the complex conjugates of the quantities AX

Also, ﬁ
=

and o
Ay

and A

Ax.”"'lvl‘}?; I A

,ﬂn-%—bn,-b-’

The- -

The function Jn is the Bessgel function of the argument%“ﬂ&ﬂ~.
function Jt is determined the same way as before [see EHquation

(3.8)], and only depends on the argument 554““ﬂkﬂﬁh The other

notations have the form:

L& Ko Ui M L o
E‘éi"“ E;..%t,' L '“;"‘;:(Kv),‘ L “L«J—u‘-—-«(%vtnﬂ]
£ . .

(3.15)

The brackets <..»| indicate integration over t&lwith a weight:

'iglﬁﬁ elPGéa?)

b} Electron osclllations in a cloud with

As we mentioned earlier, when the magnetic field has almost
comﬁletely diffused into the cloud, the transverse dimension of the
cloud becomes small compared to the icn Larmor radius. At this
stage of the cloud expansion, the iocns can be considered to be un-
magnetized. They can be described by the dielectric constant
found in section 1. The electron component is always magnetized
(even in the plasma transition layer). Thus, 1ts dielectric prop-
erties are 'described by the dielectric constant tensor for section

2 at any stage of expansion.

“~
o

This paragraph treats cscillaticns with fregquenciles
¢u>uu=%%%—hﬁvh.L »K%:d . For such oscillations, the lons are cold

and "infinitely heavy", and make only a small contribution tc the.
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dielectric constant. We restrict curselves to studying long-wave

(f;&<<ﬂ), low-frequency ( foumm<ﬁ@b perturbatiocns, which are sensi-

: tive)to relatively small temperature anisotropiles. Then the com-
ponents of the dielectric constant tensor for the electrons {(and

thug for the whole plasméj can be written in the form:

l3I IGE

‘8 ;E‘J + Eij 1\1‘ (3-16)

where ﬁﬁ’w is the Hermitian part of the dielectric constant tensor,
which characterizes the hydrodynamically unstable spectra of the
oscillations: S NERT R

o) erdadl . B aT o e gl e
G N s T (B ?ﬁ""?@]”f’_”‘-e..
W3 2 (ﬁ: We B B. aT 2 - '
Eay ™ G Foles®
(3) t[ ah% (! <3 ATy B a]sufﬁ”

812= _ K" u?- wa} T 2 T“ (3.17)
sy g wieL o) e f-');o *i;u m,. ST
E‘-“H: 533 ““J‘j{_i ‘Exghém m‘.rb ( R ) g

42 "ag 2 T

Ay

T1."_-)) fo)n NZ B f:wm sin G'C.DSG‘

.

s T, . . -
Here, yhﬁ, %%5/ ls :the ratio of the gas-dynamic pressure of the

plasma to the magnetic pressure, nhg“m &y

.;A A} ’
> Loy nh%g_ /, and
P
s “—2-<.-w—-w‘}w(-4)>

e

Expressions for ;&ﬁ “the anti- Hermltlan ‘part of the._dielectric constant]

Ay

tensor,/wlll be given later, after analysis of the hydrodynamic
stability. Substituting €43 in Equation (3.2), and completely /31
(0)

neglecting the anti-Hermitilian part €557 ylelds the following egua-

tion (for simpliclity, we take T = const. Then HﬁdfredQCes to
Lk ﬁg:%: i 1
“JQ‘{‘ sz._ L >\

T

wrf ]

k)d '”E‘;E;*" (/* ﬂ" /LT {f"‘"ﬁx d.g_/fzﬁ“-"a‘ sz"brﬂ-v'-/
(3:18)

if Wi tlyy T
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Equation (3.18) describes two independent oscillation modes for a
plasma whose pressure is not too high Qﬁzkéb. One of these modes
lies 1in the freguency region‘ﬁnﬁﬁﬂyL is not related to the plasma
inhomogeneity, and is called whistler (or whistler atmospherics).
The second is intrinsically related to the presence of anisotropy

and 1lnhomogeneity, that is, it is the "drift-anisotropic’ mode.

The oscillation spectrum for the whistler mode has the form:

W s (L) - & sl B 5 i) bos / (3.19)

and 1is purely imaginary, that is, the oscillations are aperiodical}y\
unstable 1f the inequality

| .Xﬂ'h’ﬁ?‘*!,r (3.20)

) L 342 T/
is satisfied, where L[“fé?%a ;_A='d§%

(3.20) shows that stabilities only occur in regions of positive AT

« Analysis of Inequality

when: C
“‘% j‘}‘-'_‘i*-"ll"”*%_,_w{ . (3.21)

where Aé is the first root of the equation’n@)=}f. The correspond-

~
no

ing interval for the quantity-#@+ﬁp@¥ has the form:
‘.A T -.‘.'“‘2-—- ‘l v “ ) .,
TSR e pes

We note that in the hydrodynamié whistler instability, oscillations

(3.23)

ST -
are excited with a large ratio %?ﬁw%joj, so that there is always
< s : B

CRES - : . .
a minimum value‘ﬁ?%smaﬁfﬁ below which the oscillations are hydro-

dynamically stable (see section 4).

1f the conditions for a hydrodynamic instability are not satis-
fied in the system, then it is necessary to study the rossibility
of the existence of a kinetic instability. Then the quantity K |
is not very small, and the fundamental contribution in the anti-

Hermitian part of the dielectric constant tensor comes from terms
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proportlonal to J &ﬁﬁﬁ),fﬁﬁﬁézf In this case, the tensor components
gﬂ/ will have the form:

N - {4}

s- E *é.w ffgwé'gv i;;"ﬂ/

‘ .24
x '-'"G)JL 'Z‘ é-gg *Ff"”.y#) (3 )
and the dispersion equatlon (3 2) reduces tc the egquation:
ﬂm Dmﬁ
)  _
D &)‘%rx* e / /
(3.25)

DM’"‘N }‘iz%;* A/f zf;?)/’*“'q"ﬂ“')&'m v.

The sclution to Egquation (3.25) has thelform;WFiah+%ﬁ, where the

™~
Cay

increment vy is:
T (3.26)

and is positive only for negatlve A4Ai:

S
_T;r < J&*'

(3.27)

Condition (3.27) shows that the kinetic instability, which arises
from ordinary particle-interactfion resonances with the wave uuumqj)

is possible for the same degree of anisotropy as the hydrodynamic

: : _ i i
instability. If the degree of anisotropy is small gl%ﬁijzh)!; then
studying the stability of whistlers requires an examination of

when the resonant

oscillations with a sufficiently small ratio 41,

reaction of particles with the wave starts te play an impoertant role
at the cyclotron frequency-(ﬁf;ﬂmkaﬁ). Examination of suech oscil-
" lations is simplified by the fact that the fundamental terms in the

dispersion equation are proporticnal to CH Taking €s different

from zero and using ;ﬁﬂpgﬂ in the first appreximation yields the
following equation from (3.2):

(W% = Euy ) Eory by = (3.28)
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which, in the frequency and wavelength region of interest to us,

(J J
ﬁ*@* %)N““f*bi[*’f J'Jrr*)’ ’ﬂ)f w]li (3.29)
Here, we use the following approximate expression for the function /34
[CES:1 .
wj (lK.IUr !'

LT (o) '
. J. (ﬁ:ﬁﬂﬁtl _' J (la-c..i?-&

(3.30)

The double sign in Eguaticn (3.29) corresponds to the two roots for
the whistlers [see (3.19)]. The solution to Equation (3.2%) has
the form:

w=;$4vﬁfy } (3.31)

wnereﬁinégiq,ﬂ and the instabllity exponential growth rate vy is:
! P

%5- \E:ftvr[‘: ;’“Hg{ﬂ? ] "‘F( —i—u ’]I (3.32)

It foilows from Equation (3.32) that a small temperature anisotropy
leads to unstable oscillations which propagate along the axis in a
cone of angle OO’ determined by the relation:

Cr ,"‘i gr)<1 (3.33)
1f the condition:
.*ﬁ'wk‘c‘
EEE (3.34)

1s fulfillied.
Since terms proportional to‘%%*%cmfﬁf[see Equation (3.17)]

were not considered in the dlelectric constant Enwéﬁ?fln [II],

results obtained above [see Equations (3118), (3.32)] are more
general for the conditions of hydrodynamic and kinetic instabillities.

Turning to .the analysis of drift oscillation instabilities
@W"“hgﬂ$Q}), we noo%that in this case the left side of Equation
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(3.18) i1s small for a small degree of anisotropy ( «\) Then
Equation {(3.18)} can be reduced to the form:

gw ) 1 B (@-2000)° .ﬂ =0

TN w) T E @owdi T (3.35)

» x g, 7 s
where 'y~ d0 - Wy ﬁ?’dtg The equilibrium condition

v ‘ ‘
EE(?T?B?%ﬂﬂhrelates the Larmor freqguency (wd) and the magnetic drift

frequency (wM):
) .l.a_,.-ci-e—-g.\ '
&
F (3.36)
1f we introduce the variable #é—gﬁgi_l} and consider that Equation

(3.35) for £I<<* can be solved only if;wqa@L that is,}ﬁ1§i¢#, then
Equation (3.35) takes the form:

Priadetl, L adlfy 4 jl:' B:(l_‘._l.?‘)/
where &9¥Wiﬁl+§ﬁiﬂ*zfl , b=%p =R
‘. Equation (3.37) has complex roots for'B 2 1. [Thus, drift oscilla-
tions (w v d) are unstable in a plasma with finite pressure (8 3 1)

for small degrees of anisotropy. The ilnstability exponential
growth rate 1is of the order:

3

(3.38)

: «Mi

3“”59

In a plasma with a sufficiently large pressure (p>—~ﬁ€), Equation

(3.18) reduces to the form:

(3.39)

. a ?ﬁfﬂ
- p ‘B J) { T):‘(w :;ﬁ)-

in the frequency range w " W3, and has unstable solutions with a

frequency ¢\¢ w4 with a growth rate vy, equal to

f““}d““ﬁ[c’*‘ﬁ‘ 2{1- »T}J (3.4(})

It follows from Equation (3.40) that the drift oscillations in an
anisotropic plasma wilth a high pressure (;ﬁygf»W) are unstable only
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S~
1

~



for propagation angles which satisfy the condition:

“_*Lﬁ il w)‘-\ (3.40a)

Thus, electron branches of the oscillations can be excited at
the first stage of expansion, when the transverse dimension of the
cloud is small compared to the ionic Larmor radius. The presence
of small pressure (temperature)} anisotropies, which are caused by
the free cloud expansion along the magnetlc field, can lead to a
bulldup of whistler type oscillations only for a pressure large
enough to satisfy the condition ﬂ;>%}\'1ﬁs the cloud expands, its

pressure will fall, and a small degree of anisotropy will not be
able to cause a whistler mode instability (if the kinetic instability
with an exponentially small increment for Han @]15 not con51dereai\

The electron drift oscilllation instability, examined above, 1is

evidently more dangerous at this stage of the cloud evolution.

magnw1th magnetlzed 1ons (t ST -

We now investigate the stability of the drift oscillations in
the tloud at the expansion stage when the cloud dimensions become
larger than the ionic Larmor radius. In this case, the dielectric
constant of both electrons and ions is deseribed by Equations (3.13) /37
to (3.15).} We will not examine completely the stability of drift
oscillations in a plasma with an anisotropic pressure, but limit our-
selves only to explalining the effect of a small pressure anisotropy
on the stability of a weakly inhomogeneous plasma with a finite
pressure. We consider freguencies and wavelengths contained in
the interval:

K -U- .rl;j—-wd(K,J”e ;AK*'-‘IT;““'E._

Evaluating terms in the dispersion equation {(3.2) shows that
purely transverse oscillations occur in the frequency range of
interest ( Eux.,gxep.l These oscillations propagate almost
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perpendicular to the magnetic force lines (®.7k{), and are described

by the equation:

few nTz Fai l"c)’a': W
1= '_'—q,f: = {: L0 T“'z A —.-E?._‘ (.uu C(wﬂi}“
N @ .. o ae OJdg “T‘.‘ Cbnmlf }41
'-\1-« ’K } Pm " Rfr [T.m Cd 3 Tue . O ( 3 )

Where ' . C -
' . wodow X
-. C(a) I ——f;‘f' :

These oscillations exist in the plasma only if the degree of aniso-
tropy 1s not ftoo small:

.Y ﬁ’: -- |
5o . (3.42)

Equation (3.41) can be solved analytically only in two fre-
quency regions: 1) p}?wuf; and E)EQ<cqu. In the first case, the
function C(a) is approximately equal to 1/a, and the solution is
easlly found to be:

lue ATI.O , i
wsq{_\Kiw_iaU+“ - PreT '.l : (3.43)
This solution} is valid only for:
. dT:la‘
%‘:“* Pl Yy T.gi«"" / (3'}'”4)

The instability occurs for the condition:

l'bT.u. z+,__, l
Tee ﬁi ] (3.45)

a¥e|

Equation (3.44) is satisfied only for t+ip.=p%Y, that is, it has

& resonant character. I it 1s not éatisfied, then the solution to
Equation (3.41) will be found in the regionvpﬂswgd. Assuming for
simplicity that fwi=w.), and using the following approximation for
the function C(a) for small |al:

:C&ﬂ*di%%kﬂdﬁﬂ&@&nﬁ&éagwgn@%&\ (3.46)

REE {2 o \

where:
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for the real part of the fregquency Wg leads to the eguation:

Ulpg;

.'sﬁ“‘—'”' ﬁj "2L u) ﬁwr,;'."' | (3.47)

If we 1limit ourselves to the case of small anlsotroples and take

Tf ﬁTt.

T «*b and if we are not interested in large pressures (p..£4)),

then Equation (3.47) has a solution in this frequency range o <wgy,

which 1is approximately written in the form:

ol
El Tﬂ-‘:

Y

(3.48)

Odg = gy e, = "‘2"')!'!‘

Evaluation of the anpgfﬁg;p;ﬁigp_pgytwqf (3.41) yields the follow-

ing expression for the 1nstabhility increment:

(3.49)

wl Y,

¥ o 2 - prat)alivl @or )]

~
\O

Equation (3.49) shows that unstable osclillations with a fre-
guency less than the magnetic drift frequency can exist in an aniso-
tropic ﬁeakly inhomogeneous plasma if the temperature anisotropy and
the oscillation wavelength are related by the equation:

r

yo2fe, Bfe \ (3.50).

: Tﬂc KN L

4, Effect of the External Plasma (Medium) on the
Cloud Stability (p «4)

The previous section examined the stability of the cloud at

the stage of 1ts motlon for g« when the presence of the surrounding
magnetospheric plasma was neglected. Here, the effect of the exter-
nal plasma will be considered on the anisotropic instabllity of the
cloud., For coﬁﬁeﬁiénce, the investigation will be done in a system
which is at rest with the Investigated cloud element. In this
system, external plasma particles fly into the cloud with a velocity
vy Z u along the field, and with a velocity v0 perpendicular to the
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field {(see section 1). We consider the case when the average
particle velocity is along the field, that 1s ﬁ;v?J. This 1s valild,
for example, at the stage of cloud motion when the transverse cloud
dimensions become larger than the ionic Larmor radius "?EJ for the

rarefied magnetospheric plasma, which fiies into the cloud Qgcgq

5
parameters\ with a line above them refer to the external plasma}.
Here, the drift in the crosséd_ggpmggnet;p“aggﬂeleqpric}fields of

the polarized cloudiwill set the external plasma particles in motion

with the same diféétion and velocity as those of the clcoud as a

whole (the cloud injection velocity %e). Thus, the average trans- /40
verse metion of the magnetospheric plasma can be neglected relative

to that of the délcoud. The presence of a relatlive average velocity

between the plasmas of the magnetosphere and the cloud can be related

only ﬁith the expaﬂsion of the c¢loud along the maghetlc field force

1ines. Here we ndﬁathat the case of cloud injection along the geo-

metric field 1s ofhaefinite interest.

For cloud parameters of interest, the magnetospherlc plasma
can be considered cold (T << T) and rarefied (n << n) in relation to
the cloud plasma. We consider the stability of oscillations in the
plasma for which electrons can be consldered to be!magneﬁgzedi
e, , and take o»a. xvy | and ;wﬂaﬁigﬁﬁﬂfbr the

. L L
- r [ “W Y
fivey, W, ¥yl (GO LS

ijons. In the frequency reglon @< ¥, | @%wﬂpﬁq, both a small

degree of plasma anisotropy (.ﬂaéiéﬁb and the plasma current velocity
-

w b

tial growth rate can be rather large. In this region, the contri-

have a small effect on the plasma stability, and the exponen-

bution of the ions¥* to the dielectrlc constant tensor can be
neglected. The compcnents of this tensor can be written in the

form (in a cocrdinate system where ?.‘“4):

# . . '
This is correct, 1f we do not consider the case of wave propaga-

tion too close to the directioni&r;iﬂwhich 1s related, of course,

to the whistlers examined in section 3).
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Substituting the tensor €54 from Equation (4.1) and performing  /41°

certain transformations reduce the dispersion equation {3.2) to

the form (if small terms'~J {— are neglected): .

hq \»’% }\
| (ﬁg'“ _:." ’-)[ ““' I 'TE* - 2t3”“f/ (—-—- -5 --'-""-)]
L

}?“" UL g a B ,,.M,Lnﬂ_.bm S R 3 }

ﬁ% GRS PR C L[ et A (4.2)
: * -

- %—-~~ ~ﬂ‘“‘> o

In the casegiapgg Equation 4.2 transformed into the spectral Equation
(3.19). This 1s a fourth-order equation; in general, it is diffi-
cult to solve it. First of all, we note that we are only analyzing
the stability of plasmas which have a small degree of anisotropy

Bz o u® nu*

( 2¢Y) and directional veloeity 1?%5;}?~~Er~u—;~ﬁﬁﬁ ﬂ
For long-wavelength oscillatiocons kg«ggﬂ, unstable solutions to /42

Equation {(4.2) 1lie in the frequency regionau«myl, and have the form:

wéé rcﬂ" C(i+aﬂ,, zﬂu G sén ___:_7_1, : (4.3)
1 . J N
where
0o SR pp,
o 2+qﬁl P -
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and

. 12
2 =2 o ﬁu
!.I"LU. '—)“LU;.“} ??ﬂ]‘a?“f‘ﬁpuir
The instability condition is

Qs O->q .
__-f“ "’ll (4.4)

In the case of a large\velccity "u", when ﬁu;ﬂ (that is,fu»yﬂ), the

condltion for oscillation buildup (L.4) is governed by the inequality

Pa"nin,"ﬁ’u"ﬁ’ma:c"r o o - (L‘-S)
Where ' = _. win [ . ‘ _ libﬁlﬁ@#SI é;&irf_@;
ﬁﬂ;}_mw{z*aﬁ"! o B }

In particular, the instability occurs even 1f the temperature aniso-
tropy is neglected, that is, for H(i+a *ﬁpu“ﬁL Here the condition

for a purely current instability is the inequality:

- A .
. 2<PH.-(;::.!._é. a

(4.6)

~
g

If the velocity of directional pressure is small'(JLﬁ‘d), then the

instability condition [Equation {(4.4)3 has the form:

-‘6.-p‘ssbf@-rér(.’,’nun"ﬁ'-l/-%;i’o, (L!-'?)
where
. h w2
: pul:g%ﬁﬁ
D PO AT
LTS

The Inequality (4.7) can be fulfillg@ only in the presence of a
temperature anlsotropy in the cloud;qﬁ¢d;)l

Condition (4.7) is fulfilled for (we are mainly interested in

the casefxfd):

Casas T, (o)

(4.8)

Ca,caca,, {p<0);

where:
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S w4 Ve .
‘A$=%: dﬂ'(‘i 2 i lj}i-yn?i—;-sm]j.

The instability occurs only for d > 0, that is, for:

. ﬁu . (!‘-3:5-'5.‘ Uj

§ T sy (4.9

P>p e

T whén,p~5i, Equation (4.8) transforms into the

For -0 (¥ 1),

instability conditions given by Equation (3.21), above, for the
case@ﬁwﬁciﬁoé. We -investigate how the change in the parameter
R W
Vs ~ir

Crease monotonically as the cloud diffuses, because in all proba-

~
=
=

affects the plasma stability. The parameter v should in-

|

pility, the cloud density will decrease faster than its temperature.

: T
As v increases from zero to y«V <5<l

. the parameter b decreases

from 1 to p* ) Here the mlnimum value of the degree of anisotropy
to\
‘A“A(? P)1 abocve which the instability condition «{a. ) is satlsfled

|{a¢ ﬂ 1ncreases correspondlngly from-vaalue' affpu}

(see Figure 2). Furthermore, instability occurs 1n the interval

‘*4.} aff,

Whéreﬁxp” . Tor v > l,'thﬁ quantity A, sharply falls and
then monotcenically rises to the_valuer@3=qgﬁa2}L with further growth
of v. The value cf A+ at p = 2 1s muech smaller than the wvalue at
p:

1. We note that the wvalue of p is bounded from above (v should
not beclose\to 1) by the observability condition (g <« x.a

). Thus,

L"
Tz
M

>

I

for ; the‘observed anisotroplc instability can develop

sn

for a smaller degree of temperature anisotropy in the cloud than

‘Rt
for the case\~§—<4ﬂ
. ‘ Sk Vs

1w

It follows from Equation (4.3) that the

o Ok
corresponding exponential growth rate for ﬁ»>3%; 1s larger than in

the opposite case (remalning parameters being the same). The un-
stable perturbatlons are distributed 1n a cone with angles

ée 4ik‘¢ﬁ UKP% where 9n9“ﬁ“5""““i As ﬁ increases in the infterval
|9 gﬁc z

value ”‘gfﬂw

s The growth rate 1n1t1ally increases from zero to a Max1mum
for 1} § aRHrJGHY and then falls. It follows from
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Equation (4.3) that the exponential rate for perturbation growth in
the system of glgu@}+ plasma 1s of the same order as the increment
for the buildup of the whistler mode for the cloud:

. AW ,
The maximum value of the growth rate is determined by the observa- /4

bility condition ¥ <««.%,x.uxn/, that is, it can attain values of

0.01 to 0.1 megahertz (for u~oiw ).

Unstable perturbations with shorter wavelengths {k&ag;ﬁﬁ
- 7

have & phase velocity which is larger than the current velocity

( £ u)). iBecause of the observability condition RPe«i , g1

the directional velocity of the current u should be small compared

to the thermal velocity of the electrons Vip - Here the parameter

Bn is small, and the temperature anlsotropy (A # 0) of the cloud

plasma significantly affects the instability.

If the perturbations have a sufficiently small wavelength
@(ﬂ%sxﬁﬁ-#, when the frequency spectrum lies only in the region

Em»»:..'u\,'then Eguation (4.2) becomes biguadratic, and has the

solutions:
okz Kl, : ® U‘Tu Q‘} 4":‘4_‘ "
¢ Tn 2&1 (}“t ( JM _q-:-itl' (u 11)
where
"o . ‘ oz 1.' ._%_‘.
z’,'l='%"1<ﬂ;.{r_'z s a=¢31*-ﬁ+-ﬂ _[9(,&., )

U | o+ "'""){A+ B 2'1‘321} [—- “A(&* l)]}

From Equation (4.11), it can be seen that, along with the whistler-
moede distortions (3.19), the presence of the external rarefied

(magnetospheric) plasma causes a new spectrum of oscillations which
are absent for m = 0. The oscillation spectrum (4.11) is stable

only if the conditions
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012"0‘ .

e, | (4.12)
are satisfied simultaneously. Thus, the development of perturbation
-instabilities requires that at least the condition a2 < 0 be satis-

fled, or else & > A,, which is_weaker than the xnstabllity condition-
x%«puxAR,hM_o»humm%h;ftrz“7“~w~— B o :

(3 20) a < foo;_a >t' P O) for the whistler mode (3“19), but“Hwﬁm

T 5
stronger than the condition A > A, for perturbation instabilities
I~ * ‘
with «rm&u for ffvzﬁ . For f;(«jS(w) , The oscillation spectrum
(4. ll) is unstable for A > A2 gnd has & growth rdte on-the order of
‘.-:}":}.za. .
) '5 o1
by, ("“") : -
T (Jiygm' _ (4.13)

e

If .Kg»p(_‘j.)i , then the growth rate can belsignificantly larger than

Bguation (4.13). In this case, only the whistler-mode occurs from
the spectral eguation (4.11). This mode is unstable {3.19) for 4 > Al

and has a growth rate glven by Equation (4.10). A new mode also
occcurs, which is unstable for @=1154’ and has the growth rate

W~H *m;{“‘% This last oscillation branch exists in the region

vh and transforms into the region o~y % ‘for“fi).

@wﬁm\mrﬁwﬁ-

Finally, we conslder other possible sclutions torquation (4.2).
in the region;w~kuU|. The wavelength }S}of the orderé“?ﬁ*ﬁ%ﬁ\for

these unstable ocoscillations. Here, if v »> 1, then the oscillation

frequency 1is equal to:
) Kty
mﬂ‘*Kb"T :‘r'L

(4.14)

The instability growth rate (for A > A when a, < 0) is of the same

23
order as the rate for the whistler mode (3.19). If v << 1, then the
oscillation spectrum reduces to a pure whistler mode, an unstable

mode‘Eﬂg}ﬂ and a new mode:

:w :K.;‘u (li\lyﬁf_‘%), ‘ (}4.15)

e

1’
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which is unstable for the conditicon

a:,_yc/ut.a Y Ea, 9*5'52(’”}}{33!} (4.16)

It follows from this that the fregquency instability (M.lS)(KuuNMJ)
is also possible for small degrees of cloud temperature anlsotropy

(A). The exponential growth rate 1is of the order
- JL1
¥ ety () [Rm‘}‘vﬁ( ) f (4.17)

Thus, 1in the freguency region Q;&mu|, the maximum rate is actually
of the same order as in the region ‘@«w,u} that is, of ‘the same
order as the rate for the buildup of the whigtler™mode.

Conclusions

Analysis of the stabllity of an anisotropic inhomogeneous c¢loud /U
plasma, which propagates in the magnetosphere along the magnetic
fleld force lines, produced the followling results. Ifithe degree

of cloud temperature anisctropy, which results from its expansion,

is Small.(éﬁ—;;b—&ﬁ), then the hydrodynamic whistler instability

will be substantialkonly for the initial stage of diffusional expan-

sion. Here, ﬁai]anﬁ the condition¢;>% 'ﬁs fulfilled for the hydro-
e

magnetic whistler instability. The chafacteristic rise time for

these oscillations is approximately 16_5 seconds. As the c¢loud
expands further, the kinetic whistler instability ~#,-o0 begomes more
dangerous, This instability has an exponential growth rate*

Yy 10P sec’l, for A ~ 1 and <*pi~oa,,

Considering the cloud plasma inhomogenlety in the presence of
a temperature anisotropy leads to the discovery of new branches of

unstable drift oscillations. At the initial stage of diffusional

#
A rather complete analysls of stabillty of whistlers, which propa-
gate along the magnetic field (K*zq), is given in [12], for example.
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expansion, when (pi > L), an instability occurs with an exponential

growth rate on the order of frequeﬂcy for drift electron oscil-

lations:

-

i.e., this rate exceeds the rate for the instablility for kinetic
whistler oscillations. Moreover, as copposed to the whistlers, which
propagate almost entirely along the magnetic field force lines

(kL = (0), these perturbations do not have a rigorously separate
direction, that is, they can befrécorded{in a direction perpendicu-
lar to the magnetic field. Further expansion of the cloud leads to
unstable drift oscillations with a frequency,

. . P;U‘i . 'L _1
f.\);_.“va’-"‘v "-—L—ij" - 10. sec y

when the ions also become maghnetized (P;<L; Laicﬂ$.

The following statements can be made about fthe development of
anisotropic current instabilities, which were examined in this

paper. First we note that perturbaticns with large phase velocities

*ﬁ%»l: can exist when the spreading veloclty of the c¢loud alceng the

force lines 1s small compared to the thermal velocity of the cloud
electrons ( Ve ﬂ, because of the observability conditions

) I

. S ETS | :
KU DK, U, ,tﬁyig"vhy Here, the ratloﬁ-ﬁw\and W, BT arbitrary.

Perturbations with smaller phase velocities %%—éll can grow 1n the

pilasma only for a sufficilently large flow velocity hrovﬁ+ﬁq. Thus,

if conditions u« ¥y ,471 are satisfied, then (for :;al) short)wave-

length perturbations for which & K fa )axfﬁf*'%é\ will grow at the

initial stage of diffusional cloud expansion {p~1 , %gﬁd[) with a

maximum exponential rate [on the order of the whistler mode rate

from Equation (4.10), but with m>>maﬂjq
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:{:.""" 7 lne l (K Pe_)a

The rise time of this instability can attain values of up to 10

times the cyeclotron period, that is, up to 1072 sec™ ! {with a con-
sideration of the conditions w«2.| and K&“ﬁ). In the case of
‘ﬁié-, the growth rate is much less. At the subsequent stage of
cloud expansion, when B becomes small (as previously, n/n << 1),

t
\N
o

|

such that 4 <<{ 8”1 (or if at the stage B ~ 1 the cloud temperature anis

el
ny

tropy is small), the instability has a resonant character with
respect to the wavelength

(kpe V™ (g -—-'f';;e >t

and has an exponential growth rate r~!ﬂiﬁ“--—y«

I [For

fﬂﬁkuﬂ, see Equation (#.17).]% Here, the condition ﬁ?»v{?ﬁ@*ugé%
must be fulfilled. This iInstability decreases as the cloud continues

to expandL when its density falls to a value of hgﬁ"%gL Thence it
follows that if the flow velcocity of the cloud along the magnetic
field is Sméll;ﬁhQ&J(but 'u»ihg), then instability 1is possible for
a small degree of cloud anisotropy ( a<1]) only in the initial
diffusional expansion stage (8 v 1). For ali the parameters chosen
for evaluaticon in this article, the maximum cloud expansion velo-
¢ity along the geomaghetic fiéﬂd only siightly exceeds the ionic
thermal velocity“in the case of a hydrogen plasma, but is much
larger than the ionic thermal velocity for a barium plasma. Thus,
if the injected plasma cloud does not have a significant initial
temperature anisotropy, and if the ions are not able to cool signi-
ficantly during the initial cloud expansion stage ( ﬁafD, then a
hydrogen plasma could be unstable relative to the hydrodynamic
current instability only during the initial diffusional expansion
stage (.P“J)’ while a barium plasmafcan remaln unstable for further

cloud fusion, as long as the relationship h?"{fl is satlsfled.ﬁ
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The above llnear stablility analysis of osecillations of an
anisotropic inhomogeneous plasma, which flows along the magnetic
field force lines in the magnetosphere, deoces not answer the guestion

of the physical consequences of one instability or another. These - /51

answers require a study of the nonlinear stages of instabllity
development. However, the followlng statements can be made rela-
tive to the drift instabilities of an inhomogeneous plasma which has
a temperature anisotropy. As in the case of a conveetion current
instability, which is also related to the inhomogeneity and particle
velocity distribution anisotropy, these inétabilities should lead

to additional convection, that 1s, to equalization of the kinetic
and magnetic pressure gradients. In the final analysis, this can
lead to a faster diffusion expansion of the cloud. A4s the in-
stabilities develop, which are related to the temperature aniso-
tropy, there is a tendency to wesken the temperature anisotropy,
although continued longitudinal expansion of the c¢loud will some-
what maintain the cause of the instability.
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Figure 1. Injectlion of a plasma cloud
at the i1nitial moment of time

Figure 2. DBoundaries of the instabllity region
{shaded). The broken curve corresponds to the

condition ﬁ%ﬁ#ﬁ%/. The solid curve corresponds
to :_igahzﬂf7?§e.|
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